Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.531
Filtrar
1.
J Hazard Mater ; 470: 134193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569341

RESUMO

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Assuntos
Arsenicais , Compostos de Ferro , Ferro , Minerais , Sulfetos , Sulfetos/química , Ferro/química , Arsenicais/química , Cinética , Minerais/química , Compostos de Ferro/química , Oxirredução , Solubilidade , Arsênio/química , Biofilmes , Acidithiobacillus/metabolismo
2.
J Hazard Mater ; 470: 134133, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574655

RESUMO

Although biodegradation of organic matter is well-known to trigger enrichment of arsenic (As) in groundwater, the effects of DOM sources and biodegradability on As enrichment remain elusive. In this study, groundwater samples were collected from the Hetao basin to identify DOM source and evaluate biodegradability by using spectral and molecular techniques. Results showed that in the alluvial fan, DOM was mainly sourced from terrestrially derived OM, while DOM in the flat plain was more originated from microbially derived OM. Compared to terrestrially derived DOMs, microbially derived DOMs in groundwater, which had relatively higher H/Cwa ratios, NOSC values and more biodegradable molecules, exhibited higher biodegradability. In the flat plain, microbially derived DOMs with higher biodegradability encountered stronger biodegradation, facilitating the reductive dissolution of Fe(III)/Mn oxides and As enrichment in groundwater. Moreover, the enrichment of As depended on the biodegradable molecules that was preferentially utilized for primary biodegradation. Our study highlights that the enrichment of dissolved As in the aquifers was closely associated with microbially derived DOM with high biodegradability and high ability for primary biodegradation.


Assuntos
Arsênio , Biodegradação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Água Subterrânea/microbiologia , Arsênio/metabolismo , Arsênio/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química
3.
Environ Monit Assess ; 196(5): 430, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578570

RESUMO

Arsenic contamination in soils poses a critical global challenge, yet the influence of surfactants on arsenic adsorption behavior is often underestimated. This study aims to investigate the effects of three representative surfactants, namely cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyethylene glycol anhydrous sugar alcohol monooleate (Tween 80), on arsenic adsorption behavior in soils. The adsorption isotherm shifts from a single Temkin model without surfactants to both the Langmuir and Temkin models in the presence of surfactants, indicating the simultaneous occurrence of monolayer and multilayer adsorption for arsenic in soils. Moreover, the surfactants can inhibit the adsorption and hasten the attainment of adsorption equilibrium. SDS displayed the most inhibitory effect on arsenic adsorption, followed by Tween 80 and CTAB, due to the competitive adsorption, electrostatic interaction, and hydrophobic interaction. Variations in zeta potential with different surfactants further elucidate this inhibitory phenomenon. Through orthogonal experiment analyses, pH emerges as a primary factor influencing arsenic adsorption in soils, with surfactant concentration and type identified as secondary factors. Temperature notably affects CTAB, with the adsorption inhibition rate plummeting to a mere 0.88% at 50 °C. Sequential extraction analysis revealed that surfactants enhanced the bioavailability of arsenic. The FTIR, XRD, SEM, and CA analyses further support the mechanism underlying the effect of surfactants on arsenic adsorption in soil. These analyses indicate that surfactants modify the composition and abundance of functional groups, hinder the formation of arsenic-containing substances, and improve soil compactness, smoothness, and hydrophilicity. This study provides valuable insights into the effect of surfactants in arsenic-contaminated soils, which is often ignored in previous work.


Assuntos
Arsênio , Tensoativos , Tensoativos/química , Solo/química , Polissorbatos , Cetrimônio , Adsorção , Arsênio/química , Monitoramento Ambiental
4.
Environ Sci Pollut Res Int ; 31(18): 27037-27051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502266

RESUMO

Graphene-based material is widely used to remove arsenic from water due to its layered structure with high surface area. Here, we have successfully synthesized Fe-La bimetallic modified graphite sheet materials to more efficiently remove As(III) from aqueous solution. The results showed that Fe-La-graphite sheets (FL-graphite sheets) have a larger specific surface area (194.28 m2·g-1) than graphite sheets (2.80 m2·g-1). The adsorption capacity of FL-graphite sheets for As(III) was 51.69 mg·g-1, which was higher than that of graphite sheets (21.91 mg·g-1), La-graphite sheets (26.06 mg·g-1), and Fe-graphite sheets (40.26 mg·g-1). The FL-graphite sheets conformed to the Freundlich and Dubinin-Radushkevich isotherm, and the maximum adsorption capacity was 53.62 mg·g-1. The removal process obeys intra-particle diffusion and pore diffusion for As(III). The results of batch adsorption experiments and characterization analyses demonstrated that oxidation, ligand exchange, and inner sphere complexation mechanisms involved in the adsorption of FL-graphite sheets to As(III) in comparison with graphite sheets. In addition, electrostatic attraction mechanism was found vital in the adsorption. Ecotoxicity assessment revealed that FL-graphite sheets have little influence on rice germination and growth, but reduced the toxicity of As(III) to rice. Therefore, the FL-graphite sheets have good practical application value in purifying As(III) polluted water with litter ecotoxicity.


Assuntos
Arsênio , Grafite , Ferro , Termodinâmica , Poluentes Químicos da Água , Grafite/química , Grafite/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Cinética , Arsênio/química , Ferro/química , Adsorção , Purificação da Água/métodos
5.
J Hazard Mater ; 469: 134096, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522195

RESUMO

Arsenic (As)-contaminated soil poses great health risk to human mostly through inadvertent oral exposure. We investigated CaAl-layered double hydroxide (CaAl-LDH), a promising immobilising agent, for the remediation of As-contaminated Chinese soils. The effects on specific soil properties and As fractionation were analyzed, and changes in the health risk of soil As were accurately assessed by means of advanced in vivo mice model and in vitro PBET-SHIME model. Results showed that the application of CaAl-LDH significantly increased soil pH and concentration of Fe and Al oxides, and effectively converted active As fractions into the most stable residual fraction, guaranteeing long-term remediation stability. Based on in vivo test, As relative bioavailability was significantly reduced by 37.75%. Based on in vitro test, As bioaccessibility in small intestinal and colon phases was significantly reduced by 25.65% and 28.57%, respectively. Furthermore, As metabolism (reduction and methylation) by the gut microbiota inhabiting colon was clearly observed. After immobilisation with CaAl-LDH, the concentration of bioaccessible As(Ⅴ) in the colon fluid was significantly reduced by 61.91%, and organic As (least toxic MMA(V) and DMA(V)) became the main species, which further reduced the health risk of soil As. In summary, CaAl-LDH proved to be a feasible option for immobilisation remediation of As-contaminated soils, and considerable progress was made in relevant health risk assessment.


Assuntos
Arsênio , Poluentes do Solo , Animais , Humanos , Camundongos , Arsênio/química , Disponibilidade Biológica , Poluentes do Solo/análise , Solo/química , Medição de Risco
6.
J Hazard Mater ; 470: 134131, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552390

RESUMO

Arsenic (As) in sewage sludge poses a significant threat to environmental and human health, which has attracted widespread attention. This study investigated the value of adding sodium percarbonate (SP) on phosphorus (P) availability and As efflux detoxification through HS-P-As interactions. Due to the unique structure of humus (HS) and the similar chemical properties of P and As, the conditions for HS-P-As interaction are provided. This study discussed the content, morphology and microbial communities of HS, P and As by using metagenomic and correlation analysis. The results showed that the humification index in the experiment group (SPC) was 2.34 times higher than that in the control group (CK). The available phosphorus (AP) content of SPC increased from 71.09 mg/kg to 126.14 mg/kg, and SPC was 1.11 times that of CK. The relative abundance of ACR3/ArsB increased. Pst, Actinomyces and Bacillus commonly participated in P and As conversion. The correlation analysis revealed that the humification process was enhanced, the AP was strengthened, and the As was efflux detoxified after SP amendment. All in all, this study elucidated the key mechanism of HS-P-As interaction and put forward a new strategy for sewage sludge resource utilization and detoxification.


Assuntos
Arsênio , Compostagem , Substâncias Húmicas , Fósforo , Esgotos , Fósforo/metabolismo , Fósforo/química , Esgotos/microbiologia , Arsênio/metabolismo , Arsênio/química , Microbiologia do Solo
7.
J Hazard Mater ; 470: 134130, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555668

RESUMO

Biogenic nanoparticle (NP), derived from plant sources, is gaining prominence as a viable, cost-effective, sustainable, and biocompatible alternative for mitigating the extensive environmental impact of arsenic on the interplay between plant-soil system. Herein, the impact of green synthesized zinc oxide nanoparticles (ZnONPs) was assessed on Catharanthus roseus root system-associated enzymes and their possible impact on microbiome niches (rhizocompartments) and overall plant performance under arsenic (As) gradients. The application of ZnONPs at different concentrations successfully modified the arsenic uptake in various plant parts, with the root arsenic levels increasing 1.5 and 1.4-fold after 25 and 50 days, respectively, at medium concentration compared to the control. Moreover, ZnONPs gradients regulated the various soil enzyme activities. Notably, urease and catalase activities showed an increase when exposed to low concentrations of ZnONPs, whereas saccharase and acid phosphatase displayed the opposite pattern, showing increased activities under medium concentration which possibly in turn influence the plant root system associated microflora. The use of nonmetric multidimensional scaling ordination revealed a significant differentiation (with a significance level of p < 0.05) in the structure of both bacterial and fungal communities under different treatment conditions across root associated niches. Bacterial and fungal phyla level analysis showed that Proteobacteria and Basidiomycota displayed a significant increase in relative abundance under medium ZnONPs concentration, as opposed to low and high concentrations, respectively. Similarly, in depth genera level analysis revealed that Burkholderia, Halomonas, Thelephora and Sebacina exhibited a notably high relative abundance in both the rhizosphere and rhizoplane (the former refers to the soil region influenced by root exudates, while the latter is the root surface itself) under medium concentrations of ZnONPs, respectively. These adjustments to the plant root-associated microcosm likely play a role in protecting the plant from oxidative stress by regulating the plant's antioxidant system and overall biomass.


Assuntos
Arsênio , Raízes de Plantas , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Arsênio/metabolismo , Arsênio/química , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Catharanthus/metabolismo , Catharanthus/efeitos dos fármacos , Química Verde , Nanopartículas Metálicas/química , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Rizosfera
8.
Environ Geochem Health ; 46(3): 79, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367087

RESUMO

Significant aquifers around the world is contaminated by arsenic (As), that is regarded as a serious inorganic pollution. In this study, a biosorbent-based bio-filter column has been developed using two different plant biomasses (Colocasia esculenta stems and Artocarpus heterophyllus seeds) to remove total As from the aqueous system. Due to its natural origin, affordability, adaptability, removal effectiveness, and possibility for integration with existing systems, the biosorbent-based bio-filter column presents an alluring and promising method. It offers a practical and eco-friendly way to lessen the damaging impacts of heavy metal contamination on ecosystems and public health. In this system, As (III) is oxidized to As (V) using chlorine as an oxidant, after this post-oxidized As-contaminated water is passed through the bio-filter column to receive As-free water (or below World Health Organization permissible limit for As in drinking water). Optimization of inlet flow rate, interference of co-existing anions and cations, and life cycle of the column were studied. The maximum removal percent of As was identified to be 500 µg L-1 of initial concentration at a flow rate of 1.5 L h-1. Furthermore, the specifications of the biosorbent material was studied using elemental analysis and Zeta potential. The particle size distribution, morphological structures, and chemical composition before and after binding with As were studied using dynamic light scattering (DLS), scanning electron microscope-energy dispersive X-Ray spectroscopy (SEM-EDX), and fourier's transform infrared spectroscopy (FTIR) analysis, respectively. SuperPro 10 software was used to analyze the techno-economic viability of the complete unit and determine its ideal demand and potential. Life cycle assessment was studied to interpret the environmental impacts associated alongside the process system. Therefore, this bio-filtration system could have a potential application in rural, urban, and industrial sectors.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Arsênio/química , Ecossistema , Estudos de Viabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estágios do Ciclo de Vida , Poluentes Químicos da Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
9.
Int J Biol Macromol ; 261(Pt 2): 129883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309387

RESUMO

Arsenic poses a serious harm to the natural environment and human health. Lignin decorated with quaternary ammonium and metal ion can effectively adsorb arsenic from aqueous solution. Zn2+/quaternary ammonium lignin was synthesized by quaternization and metallization from lignin with 3-Chloro-2-hydroxypropyl trimethylammonium chloride and ZnCl2. The morphology, functional groups and chemical compositions of adsorbent were identified by SEM-EDS, FTIR and XRD. The effects such as pH, initial As(V) concentration, contact time and adsorbent dosage on the adsorption capacity were investigated in batch system. The adsorption mechanism was explored by SEM-EDS, FTIR and XPS. It was shown that the adsorbent was rough and contained a large amount of quaternary ammonium and Zn2+. Zn2+/quaternary ammonium lignin exhibited much strong affinity towards As(V) with the maximum adsorption capacity of 70.38 mg·g-1 at 25 °C, oscillation rate of 180 r·min-1, pH of 5, initial As(V) concentration of 100 mg·L-1, contact time of 30 min and 1 g·L-1 Zn2+/quaternary ammonium lignin. The adsorption could be well described by Langmuir model and quasi-second-order kinetic model, indicating the monolayer homogeneous chemisorption nature. As(V) was adsorbed through electrostatic attraction of Zn2+ and ion exchange between H2AsO4- and Cl-.


Assuntos
Compostos de Amônio , Arsênio , Poluentes Químicos da Água , Purificação da Água , Humanos , Arsênio/química , Lignina/química , Adsorção , Água/química , Zinco , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
10.
Chemosphere ; 352: 141372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311036

RESUMO

The mobility of arsenic (As) specie in agricultural soils is significantly impacted by the interaction between ferrihydrite (Fh) and dissolved organic material (DOM) from returning crop straw. However, additional research is necessary to provide molecular evidence for the interaction of toxic and mobile As (As(III)) specie and crop straw-based organo- Fh coprecipitates (OFCs). This study investigated the As(III) sorption behaviours of OFCs synthesized with maize or rape derived-DOM under various environmental conditions and the primary molecular sorption mechanisms using As K-edge X-ray absorption near edge structure (XANES) spectroscopy. According to our findings, pure Fh adsorbed more As(III) relative to the other two OFCs, and the presence of natural organic matter in the OFCs induced more As(III) adsorption at pH 5.0. Findings from this study indicated a maximum As(III) sorption on Ma (53.71 mg g⁻1) and Ra OFC (52.46 mg g⁻1) at pH 5.0, with a sharp decrease as the pH increased from 5.0 to 8.0. Additionally, As K-edge XANES spectroscopy indicated that ∼30% of adsorbed As(III) on the OFCs undergoes transformation to As(V) at pH 7-8. Functional groups from the DOM, such as O-H, COOH, and CO, contributed to As(III) desorption and its oxidation to As(V), whereas ionic strength analysis revealed inner complexation as the dominant As(III) sorption mechanism on the OFCs. Overall, the results indicate that the interaction of natural organic matter (NOM) with As(III) at higher pH promotes As(III) mobility, which is crucial when evaluating As migration and bioavailability in alkaline agricultural soils.


Assuntos
Arsênio , Arsênio/química , Zea mays , Compostos Férricos/química , Adsorção , Solo
11.
J Hazard Mater ; 469: 133866, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422732

RESUMO

The escalating problem of compound arsenic (As) and cadmium (Cd) contamination in agricultural soils necessitates the urgency for effective remediation strategies. This is compounded by the opposing geochemical behaviors of As and Cd in soil, and the efficacy of biochar treatment remains unclear. This pioneering study integrated 3780 observation pairs referred from 92 peer-reviewed articles to investigate the impact of iron-modified biochar on As and Cd responses across diverse soil environments. Regarding the treatments, 1) biochar significantly decreased the exchangeable and acid-soluble fraction of As (AsF1, 20.9%) and Cd (CdF1, 24.0%) in paddy fields; 2) iron-modified biochar significantly decreased AsF1 (32.0%) and CdF1 (27.4%); 3) iron-modified biochar in paddy fields contributed to the morphological changes in As and Cd, mainly characterized by a decrease in AsF1 (36.5%) and CdF1 (36.3%) and an increase in the reducible fraction of As (19.7%) and Cd (39.2%); and 4) iron-modified biochar in paddy fields increased As (43.1%) and Cd (53.7%) concentrations in the iron plaque on root surfaces. We conclude that iron-modified biochar treatment of paddy fields is promising in remediating As and Cd contamination by promoting the formation of iron plaque.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Ferro/química , Cádmio/química , Arsênio/química , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química
12.
Chem Asian J ; 19(8): e202400081, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38407495

RESUMO

As(III) S-adenosylmethionine methyltransferases, pivotal enzymes in arsenic metabolism, facilitate the methylation of arsenic up to three times. This process predominantly yields trivalent mono- and dimethylarsenite, with trimethylarsine forming in smaller amounts. While this enzyme acts as a detoxifier in microbial systems by altering As(III), in humans, it paradoxically generates more toxic and potentially carcinogenic methylated arsenic species. The strong affinity of As(III) for cysteine residues, forming As(III)-thiolate bonds, is exploited in medical treatments, notably in arsenic trioxide (Trisenox®), an FDA-approved drug for leukemia. The effectiveness of this drug is partly due to its interaction with cysteine residues, leading to the breakdown of key oncogenic fusion proteins. In this study, we extend the understanding of As(III)'s binding mechanisms, showing that, in addition to As(III)-S covalent bonds, noncovalent O⋅⋅⋅As pnictogen bonding plays a vital role. This interaction significantly contributes to the structural stability of the As(III) complexes. Our crystallographic analysis using the PDB database of As(III) S-adenosylmethionine methyltransferases, augmented by comprehensive theoretical studies including molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) analysis, emphasizes the critical role of pnictogen bonding in these systems. We also undertake a detailed evaluation of the energy characteristics of these pnictogen bonds using various theoretical models. To our knowledge, this is the first time pnictogen bonds in As(III) derivatives have been reported in biological systems, marking a significant advancement in our understanding of arsenic's molecular interactions.


Assuntos
Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/química , Humanos , Modelos Moleculares , Eletricidade Estática , Teoria Quântica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Arsênio/química , Arsênio/metabolismo
13.
Environ Sci Process Impacts ; 26(3): 632-643, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38362760

RESUMO

Arsenic and silica are known inhibitors of the crystallization of iron minerals from poorly ordered precursor phases. However, little is known about the effects of co-existing As and Si on the crystallization and long-term stability of mixed-valence Fe minerals such as green rust (GR). GR usually forms in anoxic, Fe2+-rich, near-neutral pH environments, where they influence the speciation and mobility of trace elements, nutrients and contaminants. In this work, the Fe2+-induced transformation of As- and/or Si-bearing ferrihydrite (FHY) was monitored at pH 8 ([As]initial = 100 µM, Si/As = 10) over 720 h. Our results showed that in the presence of As(III) + Si or As(V) + Si, GR sulfate (GRSO4) formation from FHY was up to four times slower compared to single species system containing only As(III), As(V) or Si. Co-existing As(III) + Si and As(V) + Si also inhibited GRSO4 transformation to magnetite, contrary to systems with only Si or As(V). Overall, our findings demonstrate the synergistic inhibitory effect of co-existing Si on the crystallization and solid-phase stability of As-bearing GRSO4, establishing an inhibitory effect ladder: As(III) + Si > As(V) + Si > As(III) > Si > As(V). This further highlights the importance of GR in potentially controlling the fate and mobility of As in ferruginous, Si-rich groundwater and sediments such as those in South and Southeast Asia.


Assuntos
Arsênio , Arsênio/química , Dióxido de Silício , Cristalização , Oxirredução , Compostos Férricos/química , Minerais/química
14.
Environ Geochem Health ; 46(2): 67, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341826

RESUMO

The jarosite waste used during this study consists of minute amount of arsenic that has a potential to be leached into environment when kept in open area. This study tried to recover arsenic from jarosite waste using hydrometallurgical treatment. The comprehensive characterization of jarosite samples was performed using various analytical techniques, including X-ray diffraction (XRD), Fourier transform Infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), and it was characterized as natrojarosite. For optimal removal of arsenic, the response surface methodology (RSM) was applied with the key factors, including dosage (A), time (B), temperature (C), and acid concentration (D) on the recovery of arsenic. The results indicated that the dosage (A) and acid concentration (D) demonstrated significant positive effects on arsenic recovery. As expected, the higher dosage and acid concentration was associated with increased recovery percentages for the arsenic from jarosite. Whereas time (B) and temperature (C) did not exhibit statistically significant recovery of arsenic within the specified experimental range. The contour plots showed the optimal operating conditions for the highest recovery percentage was approximately 52.61% when 2.5 g of jarosite was treated with 10 mol/L acid for 150 min at operating temperature of 80°. Although our study showed very moderate recovery of arsenic, it is first report where arsenic has been removed from jarosite waste. Readjustment of range of operating parameters would provide more insight into the further optimization of the yield.


Assuntos
Arsênio , Arsênio/química , Compostos Férricos/química , Sulfatos/química , Temperatura , Adsorção
15.
J Environ Manage ; 352: 120050, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38224641

RESUMO

Dirty-acid wastewater (DW) originating from the non-ferrous metal smelting industry is characterized by a high concentration of H2SO4 and As. During the chemical precipitation treatment, a significant volume of arsenic-containing slag is generated, leading to elevated treatment expenses. The imperative to address DW with methods that are cost-effective, highly efficient, and safe is underscored. This paper conducts a comprehensive analysis of three typical methods to DW treatment, encompassing technical principles, industrial application flow charts, research advancements, arsenic residual treatment, and economic considerations. Notably, the sulfide method emerges as a focal point due to its minimal production of arsenic residue and the associated lowest overall treatment costs. Moreover, in response to increasingly stringent environmental protection policies targeting new pollutants and carbon emissions reduction, the paper explores the evolving trends in DW treatment. These trends encompass rare metal and sulfuric acid recycling, cost-effective H2S production methods, and strategies for reducing, safely disposing of, and harnessing resources from arsenic residue.


Assuntos
Arsênio , Purificação da Água , Arsênio/química , Metais , Águas Residuárias , Conservação dos Recursos Naturais
16.
J Environ Manage ; 353: 120168, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278111

RESUMO

Arsenic (As)-immobilizing iron (Fe)-manganese (Mn) minerals (AFMM) represent potential As sinks in As-enriched groundwater environments. The process and mechanisms governing As bio-leaching from AFMM through interaction with reducing bacteria, however, remain poorly delineated. This study examined the transformation and release of As from AFMM with varying Mn/Fe molar ratios (0:1, 1:5, 1:3, and 1:1) in the presence of As(V)-reducing bacteria specifically Shewanella putrefaciens CN32. Notably, strain CN32 significantly facilitated the bio-reduction of As(V), Fe(III), and Mn(IV) in AFMM. In systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1, As bio-reduction decreased by 28%, 34%, and 47%, respectively, compared to the system with a 0:1 ratio. This Mn-induced inhibition of Fe/As bio-reduction was linked to several concurrent factors: preferential Mn bio-reduction, reoxidation of resultant Fe(II)/As(III) due to Mn components, and As adsorption onto emergent Fe precipitates. Both the reductive dissolution of AFMM and the bio-reduction of As(V) predominantly controlled As bio-release. Structural equation models indicated that reducing bacteria destabilize natural As sinks more through As reduction than through Mn(II) release, Fe reduction, or Fe(II) release. Systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1 showed a decrease in As bio-release by 24%, 41%, and 59%, respectively, relative to the 0:1 system. The observed suppression of As bioleaching was ascribed to both the inhibition of As/Fe bio-reduction by Mn components and the immobilization of As by freshly generated Fe precipitates. These insights into the constraining effect of Mn on the biotransformation and bioleaching of As from AFMM are crucial for grasping the long-term stability of natural As sinks in groundwater, and enhance strategies for in-situ As stabilization in As-afflicted aquifers through Nature-Based Solutions.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Manganês/análise , Arsênio/química , Compostos Férricos/química , Minerais/química , Água Subterrânea/química , Bactérias , Compostos Ferrosos , Oxirredução , Poluentes Químicos da Água/química
17.
Water Environ Res ; 96(1): e10973, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229448

RESUMO

This research introduces an enhanced limonite-based composite fiber adsorbent for arsenic (As) removal. The modification involves creating polyethersulfone (PES)-limonite composite fibers loaded with 60 wt% limonite powders, designed to be applicable in water flow environments. The fibers were prepared using a wet-spinning process based on phase inversion, with varying concentrations (10, 20, and 30 wt%) of PES in NMP solution. The composite fiber with 10 wt% NMP exhibited a porous structure and demonstrated efficient absorption of both As(III) and As(V). Adsorption followed the Langmuir model, with qm values of 1.5 mg/g for As(III) and 3.2 mg/g for As(V) at pH 6. In column experiments, As removal rates increased with contact time, attributed to decreased flow rates (1 mL/min). Moreover, increasing fiber column height led to enhanced removal rates, as indicated by the Adams-Bohart model. The mechanism for As(V) removal involved the formation of an inner-sphere complex through ion exchange between α-FeOOH and HAsO4 - and H2 AsO4 2- in an aqueous solution at pH 6.8. PRACTITIONER POINTS: Changing the polyethersulfone ratio in the composite leads to variations in the appearance of limonite within each composite fiber. Limonite composite fibers effectively remove As(III) and As(V) at neutral pH. The adsorption behavior follows Langmuir kinetic model, the qm of 1.5 mg/g for As(III) and 3.2 mg/g for As(V). Longer columns and contact times enhance arsenic (As) removal in practical water treatment systems. Adam-Bohart model aids in predicting breakthrough and saturation time in As adsorption column design.


Assuntos
Arsênio , Sulfonas , Poluentes Químicos da Água , Purificação da Água , Arsênio/química , Compostos Férricos/química , Polímeros/química , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Cinética
18.
Environ Sci Pollut Res Int ; 31(6): 8499-8509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180665

RESUMO

Ca2+, Mg2+, and HCO3- are extremely common coexisting ions with arsenic (As) in geogenic As-polluted groundwaters. Although extensive research has improved our knowledge of groundwater As removal techniques and mechanisms, there is still a lack of a definite explanation of the distinct influences of Ca2+ and Mg2+ on As immobilization. Furthermore, the question of whether the occurrence of metal-As aqueous complexes has positive or detrimental effects on As adsorption is still open, which hinders our ability to predict the effectiveness of groundwater As removal. The goal of our present work was to investigate the molecular-level interference mechanisms of Ca2+, Mg2+, and HCO3- on arsenic adsorption with batch/column filtration experiments and spectroscopic techniques. The results showed that the co-presence of Ca2+ and As significantly increased As(V) and As(III) adsorption by 22.1 and 12.2% in batch studies and by 20.1 and 16.7% in column adsorptive filtrations, which could be explained by forming a ternary Ca-As-TiO2 complex. Without the surface complex, Mg2+ only had a slightly positive effect on As removal. Co-existence of Ca2+ and HCO3- prevented the generation this surface complex, which significantly decreased the elimination of As(III). Inversely, the As(V) ternary complex and adsorption were not interfered by HCO3-. Moreover, an aqueous Ca-As(V) complex was detected without surface, which facilitated generation of the surface complex and As(V) adsorption. The results of this work clarified the distinct effects of Ca2+ and Mg2+ and As(V) and As(III) adsorption, which was critical in predicting the As adsorption efficiency in column filtration processes.


Assuntos
Arsênio , Arsenitos , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Arseniatos , Arsênio/química , Adsorção , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Água , Água Subterrânea/química
19.
Environ Sci Technol ; 58(4): 1934-1943, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180751

RESUMO

Antimony (Sb) biomethylation is an important but uninformed process in Sb biogeochemical cycling. Methylated Sb species have been widely detected in the environment, but the gene and enzyme for Sb methylation remain unknown. Here, we found that arsenite S-adenosylmethionine methyltransferase (ArsM) is able to catalyze Sb(III) methylation. The stepwise methylation by ArsM forms mono-, di-, and trimethylated Sb species. Sb(III) is readily coordinated with glutathione, forming the preferred ArsM substrate which is anchored on three conserved cysteines. Overexpressing arsM in Escherichia coli AW3110 conferred resistance to Sb(III) by converting intracellular Sb(III) into gaseous methylated species, serving as a detoxification process. Methylated Sb species were detected in paddy soil cultures, and phylogenetic analysis of ArsM showed its great diversity in ecosystems, suggesting a high metabolic potential for Sb(III) methylation in the environment. This study shows an undiscovered microbial process methylating aqueous Sb(III) into the gaseous phase, mobilizing Sb on a regional and even global scale as a re-emerging contaminant.


Assuntos
Arsênio , Arsenitos , Nostoc , Arsenitos/metabolismo , S-Adenosilmetionina/metabolismo , Antimônio , Arsênio/química , Nostoc/metabolismo , Ecossistema , Filogenia , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo
20.
Chemosphere ; 350: 141147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195016

RESUMO

Nanoplastics (NPLs) persist in aquatic habitats, leading to incremental research on their interaction mechanisms with metalloids in the environment. In this regard, it is known that plastic debris can reduce the number of water-soluble arsenicals in contaminated environments. Here, the arsenic interaction mechanism with pure NPLs, such as polyethylene terephthalate (PET), aliphatic polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), and polystyrene (PS) is evaluated using computational chemistry tools. Our results show that arsenic forms stable monolayers on NPLs through surface adsorption, with adsorption energies of 9-24 kcal/mol comparable to those on minerals and composite materials. NPLs exhibit varying affinity towards arsenic based on their composition, with As(V) adsorption showing higher stability than As(III). The adsorption mechanism results from a balance between electrostatics and dispersion forces (physisorption), with an average combined contribution of 87%. PA, PET, PVC, and PS maximize the electrostatic effects over dispersion forces, while PE and PP maximize the dispersion forces over electrostatic effects. The electrostatic contribution is attributed to hydrogen bonding and the activation of terminal O-C, C-H, and C-Cl groups of NPLs, resulting in several pairwise interactions with arsenic. Moreover, NPLs polarity enables high mobility in aqueous environments and fast mass transfer. Upon adsorption, As(III) keeps the NPLs polarity, while As(V) limits subsequent uptake but ensures high mobility in water. The solvation process is destabilizing, and the higher the NPL polarity, the higher the solvation energy penalty. Finally, the mechanistic understanding explains how temperature, pressure, pH, salinity, and aging affect arsenic adsorption. This study provides reliable quantitative data for sorption and kinetic experiments on plastic pollution and enhances our understanding of interactions between water contaminants.


Assuntos
Arsênio , Arsenicais , Poluentes Químicos da Água , Microplásticos/química , Água , Arsênio/química , Poliestirenos/química , Polipropilenos/química , Polietileno/química , Polietilenotereftalatos , Adsorção , Nylons , Plásticos/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...